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X-ray and Neutron Diffraction by Nematie Liquid Crystals* 

BY R. PYNN 

Brookhaven National Laboratory, Upton, New York 11973, U.S.A. 

(Received 8 August 1974; accepted 22 November 1974) 

An expression for the neutron (or X-ray) diffraction cross section for a nematic liquid crystal is derived. 
From this expression it is deduced that such diffraction experiments may be used to measure the nematic 
order parameter. It is further shown that scattering recorded at temperature close to the nematic-iso- 
tropic transition may show weak pretransitional effects even at finite values of the scattering wave vector. 

Introduction 

In a number of recent experiments neutron (Pynn, Otnes 
& Riste, 1972; Riste & Pynn, 1973) and X-ray (Brown, 
Doane & Neff, 1971 ; McMillan, 1973) diffraction pat- 

* Work performed undel the auspices of the U.S. Atomic 
Energy Commission. 
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Fig. 1. Neutron diffraction patterns obtained with deuterated 
p-azoxyanisole with incident neutrons of wavelength 
2=1.863 A. Patterns B through E, obtained with fluid 
samples, display one or two broad peaks centered around 
Q,-,l'8 /~-1 (scattering angle of ,-,30 °) and Q,~3.0 /~-t 
(scattering angle of ,-,53°). As pattern A shows, these 
peaks begin to develop in the solid phase at a temperature 
slightly below the 117°C solid-nematic transition tempera- 
ture. Pattern B was obtained with Q perpendicular to the 
preferred nematic axis while, for pattern D, Q was parallel to 
the preferred axis. Patterns C and E were recorded with 
nonaligned and isotropic-liquid samples respectively. [These 
data are taken from Pynn et a!. (1972).] 

terns have been measured in the nematic and isotropic 
liquid phases of certain liquid crystals. Results ob- 
tained from neutron-scattering experiments with p- 
azoxyanisole (PAA) show, in both the nematic and 
isotropic liquid phases, that the structure factor S(Q) 
has two broad peaks. These peaks, which are centered 
at Q-~ 1.8 A -1 and Q - 3 . 0  A -1, have intensities which 
depend on the temperature of the sample and, when 
the latter is in the nematic phase, on the relative orien- 
tation of the scattering vector Q and the unique axis 
of the sample (see Fig. 1). Of these experimental results 
only the presence of the (second) peak in S(Q) at 
Q_3-0  A -1 has so far been satisfactorily explained 
(Pynn, 1973). This peak is caused by structure in the 
form factor of the PAA molecules and therefore re- 
flects the distribution of atomic positions within each 
molecule. More detailed analysis of the data has been 
hampered by the lack of availability of suitable alge- 
braic expressions on which such analysis can be based. 
In order to address this problem we derive in this paper 
an expression for the diffraction cross section. Besides 
providing a qualitative explanation of several experi- 
mental observations this expression should allow values 
of the nematic order parameter to be deduced from dif- 
fraction data. Various simplifications of the expres- 
sions derived in this note are open to experimental 
verification. 

The diffraction cross section 

The diffraction cross section for neutrons scattered by 
a molecular system can be written as the sum of two 
terms (Pynn, 1973), a single-molecule term denoted 
da/df2)s and an interference term da/df2)d. The latter 
may be written as 

do') = ~  ~ ~ a j a j ,  

x ( e x p { - i Q .  ( R ~ - R e ) - i Q .  D , . u j + i Q .  Dv. uj,})r 
(1) 

where 
Rz is the center-of-mass coordinate of the ith molecule, 
Dz is a matrix which rotates a space-fixed coordinate 

system [see Pynn (1973)] to the body-coordinate 
system of the ith molecule. 
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uj is the coordinate, measured in the body-coordinate 
system, of the j th  nucleus of a molecule, 

aj is the bound scattering length of the j th  nucleus, 
Q is the neutron scattering vector 
and 
( . . . ) r  denotes a thermal average. 

An analogous expression applies to X-ray scatter- 
ing when the sum over aj is replaced by an integral 
over the electron distribution of a molecule. 

An expression for the single molecule term do'/df2), 
has been given previously (Pynn, 1973; de Gennes, 
1972) as 

( -  1) / ~ ajaj,j2/Qvjj,)ezz(COS Ojj,)(4l+ 1) 

x P2,(cos 0o) (Pzt(cos fli))r (2) 
where 

Vjj,--iUj--uj, l , COS O j j , ~ - U j .  Uj,/lU j . Uj,[, 

jz(x) and Pz(x) are respectively a spherical Bessel func- 
tion and a Legendre polynomial, 

OQ is the angle between Q and the nematic preferred 
axis 

and 
fl~ is the angle between a molecular long axis and the 

nematic axis. 
Equation (2) has been used (Pynn, 1973) to explain 
the existence of the peak at Q __. 3-0 A.- ~ in the neutron 
diffraction pattern of PAA. However, the part of the 
diffraction cross section represented by this equation 
cannot explain the peak at Q~ 1.8 A -~. To provide 
such an explanation it is necessary to analyze the inter- 
ference term given by equation (1). 

In order to simplify equation (1) let us define 
n(R~,~)dR~df~ as the number of molecules which lie 
in the element dR~df~ of configuration space at posi- 
tion (R~,F~) in this space. Here ~ is an abbreviation 
for the Euler angles (cqfl~)h) (Rose, 1957) which define 
the orientation of the ith molecule and R~ denotes the 
position of the center of mass of this molecule. In 
terms of n(R~,~) [which we henceforth denote n(i)]. 
Equation (1) takes the form 

~aO) d= I daRi l d3R,, I df~i l df2i,~i(Q)cq,(Q) 

x (n(i)n(i'))r exp ( - i Q .  Rw) (3) 
where 

cq(Q)= ~ aj exp { - i Q .  D,. uj} and R u , = R , - R , , .  
J 

An approximate expression for the correlation func- 
tion (n(i)n(i'))r may be obtained by writing this func- 
tion as the product of two terms. The first of these 
terms, denoted n¢v(i,i'), represents excluded volume 
effects, n,v(i, i') takes the value zero if molecules i and 
i' overlap and approaches unity as the molecular sep- 
aration becomes infinite. At such large separations 
(n(i)n(i'))T becomes equal to the product of two single- 

molecule, orientation distribution functions. Thus one 
may write 

1 
(n( i ) n( i ') ) r = -6-4-~ 4 QZnev( i, i ' ) 

× ~ ak,~2(n..)Pk,(COS p,)Pk~(COS p,.) (4) 
klk2 

where 0 is the molecular number density and G~j(r) 
is a function which describes correlation between values 
of the director throughout the sample. At temperatures 
which are not close to the isotropic-nematic transition 
the function GklR2(Rlz) takes the form 

Gkak2(R12) = nklnk2 (5) 

where nk is an expansion parameter in the following 
representation of the single-molecule distribution func- 
tion (Pynn, 1973) 

(n(fli))T = ~ nkPk(COS fl,). (6) 
k 

Here we choose no= 1 [which explains the ~,n4 fac- 
tor in equation (4)] and note that///2 is proportional to 
the usual nematic order parameter. When correlated 
director fluctuations exist as, for example, close to the 
nematic-isotropic transition, an extra term [say of the 
Ornstein-Zernike form (Stinson & Litster, 1970)] must 
be added to equation (5) to account for these fluctua- 
tions. 

Proceeding with the evaluation of equation (3) one 
first expands nev(i, i') in the form 

ne,(i,i')= X n m R -* Ix,2(,,') Yqm(fl,cq) Ft2,,(fl,,ch,) (7) 
lll2m 

where 17 is a spherical harmonic evaluated in the co- 
ordinate system which has Ru, as a polar axis. Sub- 
stituting equations (4) and (7) in equation (3) and ex- 
panding all exponentials as Rayleigh series, one finds 
(see Appendix for more details) that eleven of the 
twelve integrations of equation (3) can be performed 
to yield the following expression for &r/df2)a: 

- ~  d 11112 mralm2 JJlJ2 kklk2 

× (i),+J~+J~(- 1)~+J~(_ 1)~+~+~ 

x [(2/~ + 1) (2/2 + 1)11/2{ I rEdrn~t2(r)Gk'k2(r)Jt(Qr)} 

x C(jlj2j; Nirn2)C(jlj2j; O0)C(jlk; r~x+rnz, rn t+m2) 
x C(jlk; 00) 
x C(ldJ; ~xmx)C(lJJ; ,r~m)C(tlk~]~; ~ 0 )  

x C(l~klj~; 00) 

× C(lakzjz; m20)C(lzkEJ2; 00) PR(COS Oo) (8) 

where r~ = - r n  and the C functions are Clebsch-Gor- 
don coefficients (Rose, 1957). In equation (8) we have 
defined 

ilk(Q)= ~ ajJk(aUj)Pk(cos Oj) (9) 
J 
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as a molecular form factor, where 0j is the angle be- 
tween u~ and the long molecular axis. Since molecules 
are assumed to be end-to-end symmetric (or alter- 
natively neither end is preferred!) the sets of l, j and k 
indices in equation (8) are even integers. In deriving 
equation (8) [and (2)] it has been assumed that molec- 
ular correlatons are independent of the Euler angle y~; 
that is (n(i)nq'))r is not changed by rotation of either 
of molecules i and i '  about its long axis. 

Equations (2) and (8) give an expansion of the total 
scattering cross section in terms of Pk(cos 0 a) where 
k--0,  2, 4 . . . .  One might hope that even in the aligned 
nematic state only terms with k < 2 would be signif- 
icant. Such a simplification is evidently open to ex- 
perimental test. 

In its present form equation (8) is too complex to 
permit qualitative deductions about the form of neu- 
tron diffraction patterns obtained with liquid crys- 
tals, even if one makes the assumption that only terms 
involving Po(cos 0Q) and P2(cos 0Q) contribute. Fur- 
thermore, equation (8) is, in general, too cumbersome 
for use by an experimentalist who wishes to extract 
pertinent information from his data. To simplify mat- 
ters somewhat it is useful to identify terms which one 
expects to be important. 

Past analysis (McMillan, 1973) of X-ray scattering 
data obtained with liquid crystals has been based on 
the assumption that the electron distribution within a 
molecule is effectively isotropic. If this were the case, 
flo(Q) would be the only non-zero member of the set 
of form factors defined by equation (9) and equation (8) 
would simplify to: 

da~ (1) 
d-~] a =~ ~' ~' [fl°(Q)lZ(-i)z(- 1)m 

l l l l  2 m 

x [I/(21~ + 1)(212 + 1)] '/2 

x { I r2drn~2(r)Gha(r)Jt(Qr)} 

x ca,  u;  oo)c(ldg; ~m)P,(cos 00.  (10) 

In this approximation the anisotropy (dependence on 
0 o) of the liquid structure factor obtained with an 
aligned nematic is a result of the departure from 
sphericity of the molecular shape. This gives rise to 
terms of the type n~(r) for which i and j are not both 
zero and hence to a dependence of the cross section 
on P~¢0(cos 0o). This is analogous to the  result ob- 
tained by McMillan (1973) from his excluded-volume 
arguments. Other calculations (Pynn, 1973) have 
shown however that, at least for neutrons, part of the 
structure and anisotropy of the diffraction patterns 
obtained with PAA can be attributed to form factors 
ilk(Q) for which k is non-zero. Since one might ex- 
pect ilk(Q) with k # 0  to be smaller and less rapidly 
varying than flo(Q) one may include such terms ap- 
proximately by retaining only the most rapidly vary- 
ing term of the set n~(r). Thus we make the approxi- 
mation of setting I~ =/2 = 0 in equation (8) when Jx and 

jz are not both zero. This gives a second contribution 
to do'/df2)a of the form 

df2~ (2) -d-~!d =e ~'flll(a)fl~z(a) ( i ) t l + t 2 (  - 1) h 
l l l l 2  

x IC(Ug; 00)12 

× { f r2drn%(r)G'llz(r)J°(Qr)}Pl(c°s Oo) (11) 

where the prime on the sum indicates the exclusion 
of the /~=/2=0 term. Equation (11) ascribes asym- 
metry of the liquid structure factor of nematics to an 
asymmetric distribution of scattering centers within 
each molecule. 

While it is not a priori evident that the sum of equa- 
tions (10) and (11) is an adequate approximation to 
the complete equation (8), the former equations do in- 
elude a representation of the two physical effects which 
are expected to contribute to the anisotropy of S(Q) 
for nematics. Thus, both anisotropic excluded-volume 
effects and the anisotropy of the molecular scattering 
power are included. 

Qualitative deductions and suggestions for experiments 

In the remainder of this paper the consequences of the 
expressions (8), (10) and (11) will be examined. Such 
deductions are facilitated by the availability of previous 
calculations (Pynn, 1974) of the coefficients n~(r). In 
particular, these calculations showed that, for linear 
molecules, n°o(r) has a form which is similar to the 
radial distribution function, g(r), which pertains to a 
fluid of spherical molecules. However, in the linear- 
molecule case, n°o(r) increases from zero to its first 
peak in an interval which corresponds to the difference 
between the length and breadth of a molecule. This 
form of n°o(r) in conjunction with equations (10) and 
(11) and naive ideas about Fourier transforms indicate 
that one ought to expect a peak in S(Q) at a value of 
Q --~ 2n/(molecular width). This argument offers a some- 
what rough and ready explanation of the appearance 
of the first peak (at Q ,~ 1.8 A -  ~) in the neutron diffrac- 
tion pattern of PAA. 

Let us now consider a non-aligned nematic sample 
and set G,j=n,nj, thereby ignoring correlated director 
fluctuations. Then equations (10) and (11) become, 
respectively, 

da~ (1) 
=~ ~ Iflo(Q)l z - -  (2l+1) z In'lz { rZdrn~(r)J°(Qr)} 

(12) 
and 

da~ 'z' I I dY2l a =Q ~ Ifl*(Q)lZ( 2l + 1) Intl2 { r2drn°°(r)'~(Qr)}" 
l # O  

(13) 

For the special case of an isotropic liquid, n~ = Jr0 and 
only equation (12) gives a finite contribution to 
da/d~2)d. Thus, ignoring the density difference be- 
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tween nematic and isotropic phases, one finds from 
equations (12) and (13) the important result that, to 
lowest order, the difference between scattering from 
an unaligned nematic and an isotropic liquid is pro- 
portional to n~ which, in turn, is proportional to the 
square of the nematic order parameter. This conclu- 
sion remains correct for the total diffraction cross sec- 
tion since equation (2) gives a contribution which is 
independent of n2 in both the isotropic and the un- 
aligned nematic states. Thus, neutron (or X-ray) scat- 
tering may be used to measure the nematic order par- 
ameter at temperatures which are not too close to the 
nematic-isotropic transition, T~. 

The usefulness of the above method of determina- 
tion of the nematic order parameter is restricted to 
those situations in which there is a discernable differ- 
ence between intensities obtained, at some Q, from 
non-aligned nematic and isotropic samples. Neutron 
measurements indicate that, for PAA, this difference 
is essentially zero close to the Q___1.8 A -1 peak (Riste 
& Bjerrum-MNler, 1975). This observation implies that 
the scattering obtained from the nematic phase is in- 
dependent of the order parameter and that, in equa- 
tion (8), one should use Gij(r)=n~fiiofiso for both 
nematic and isotropic phases at Q _  1.8 A -~. Actually 
this relation may apply over a wide range of Q values 
but this has not yet been confirmed experimentally. 
Nevertheless the observation of at least one case in 
which the scattering appears to be governed entirely 
by the short-range correlations expressed in n~s(r ) is 
important since an alternative method of measuring 
nz can be established. In this case, measurement of dif- 
fracted intensity as a function of temperature should, 
in an aligned sample, yield a result which can be de- 
scribed by a temperature-independent term plus the 
contribution proportional to nz which appears in equa- 
tion (2). 

Close to Tc the approximation G~s(R~z)=nin s be- 
comes inadequate as a result of the existence of cor- 
related fluctuations in the directions of local preferred 
axes (director fluctuations). In this case Gz2(R12) takes, 
in a mean-field treatment (Stinson & Litster, 1970; 
Fan & Stephen, 1970; de Gennes, 1971), the Ornstein- 
Zernike form, and is proportional to (exp-R12/ 
~)/R12 where ~ is a suitable correlation length. Let us 
consider the scattering at small Q at temperatures close 
to Tc. At small Q only n~(r) at large r need be retained, 
but at large r, n'~(r)= 4rcd~odso6,,o. The contribution of 
equation (10) to the scattering is then independent of 
the nematic order parameter and of the direction of Q. 
Equation (11) gives however 

dcr] (2) 
~] d (Q -+ 0)=0 ~'flt~(Q)flz2(Q) (i)h+'2( - I) '1 

lll2l 

x ]C(lllzl; 00)1 ~ 
P 

× 4re{ .~ r2drGlltz(r)jo(Qr))Pz(cos Oe). 
~ v  

(14) 

In view of the Ornstein-Zernike form proposed for 
G22(R12) it is clear that equation (14) predicts diver- 
gent scattered intensity at Tc if the isotropic-nematic 
transition is of second order. In practice this transition 
is usually only weakly first order and thus 'critical scat- 
tering' should be detectable and should be distributed 
(as a function of 0o) according to equation (14). Critical 
light scattering at Tc has indeed been observed (Stin- 
son & Litster, 1970; Fan & Stephen, 1970) and it is 
perhaps worth noting that, in both light and neutron 
scattering experiments, this scattering is caused by the 
anisotropic scattering power of the molecules. 

At finite values of Q, director fluctuations close to 
Tc contribute to the scattering via both equations (10) 
and (11). However, the major contribution still ap- 
pears to arise from (11) because n~'2(r) approaches zero 
rapidly for values of r greater than a molecular length. 
Since the term da/df2)e makes its greatest contribu- 
tion to the diffraction pattern for values of Q which 
are less than that at the second peak (i.e. Q~3 A -1 
in PAA) one would not expect the intensity of this 
peak to vary strongly in the neighborhood of To. To 
estimate the likely effect in the vicinity of the first peak 
in S(Q) it is convenient to approximate n°o(r) by a 
unit step function which is zero for r less than a molec- 
ular breadth. With this approximation, the Ornstein- 
Zernike form for G22(R12) in conjunction with equa- 
tion (11) predicts that 

~ )  (Q2+ ~l)- l{exp(-1/Q~)  1} (15) 

for a non-aligned sample with Q in the neighborhood 
of the first diffraction peak. 

It should be pointed out that the observation of the 
effects described by equations (14) and (15) in X-ray 
or neutron diffraction experiments may indeed not be 
feasible. As has been pointed out above, neutron ex- 
periments with PAA indicate that only the term in- 
volving G00 in equation (8) is of importance in the 
nematic phase of this material. If this is a universal 
result, equations (14) and (15) will represent interest- 
ing but probably unobservable phenomena. 

In this paper an expression for the neutron diffrac- 
tion cross section for a nematic matelial has been 
derived. This expression demonstrates the possibility 
of using neutron diffraction experiments to measure 
the nematic order parameter and should provide the 
framework for detailed quantitative calculations of 
diffraction patterns obtained with nematic materials. 

APPENDIX 

In this Appendix we provide a few brief notes on the 
salient mathematical steps required for the derivation 
of equation (8) from equations (3), (4), and (7). The 
first step is to substitute (7) in (4) and to obtain an 
equation for (n(i)n(i'))r in terms of the I~zm which ap- 
pear in (7). Since the lTz,, are spherical harmonics de- 
fined in a coordinate system which has Ru, as the polar 
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axis, these harmonics must be transformed to a space- 
fixed coordinate system before the integrations over 
the orientations of Rt and Rr [cf. equation (3)] can be 
performed. The required transformation is (Rose, 
1957) 

Dm,,,,(Ru,)rzm (A1) 
m 

where Y~m is defined in the space-fixed system and 
where D~m,(Ru,) is a Wigner matrix whose arguments 
are the polar coordinates of Ru, in the space-fixed 
frame. The transformed expression for (n(i)n(i'))T may 
now be plugged into equation (3) together with the 
Rayleigh expansion of exp ( - i Q .  Ru,), i.e. 

exp ( - i Q .  Ru,)=4n ~ (-i)~j,(QRu,) 
! 

x ~ YL(R,,) r,m(Q). 
m 

(A2) 

Integration over the angular coordinates of R, and Rr, 
required by equation (3), may now be performed direct- 
ly by making use of the rules given in Chapter 4 of 
Rose (1957). 

Integration over the angular coordinates f~ and f~, 
follows a prescription similar to that described above 
for the angular parts of the Ri and R~, integrations. 
The defining equation [cf. equation (3)] for al(Q) is 
first expanded as a Rayleigh series: 

cq(Q)=4n ~ aj ~ (-i)~t(Quj)Yt*m(Q)Y~m(D, .u j ) .  
j lm (A3) 

In order to introduce the orientational coordinates 
£~ of the molecules, the It,. are rewritten in terms of 
a set of spherical harmonics, 171re(u j), which are defined 
in the body coordinate system of a molecule. The re- 

quired transformation, which is similar to equation 
(A1), yields: 

a , (Q)=4n ~ aj ~ (-i)zj,(Quj) 
j lmm" 

X Ylm(Q)Dmm,(~'~l)Ylm,(Uj) (A4) 

where the argument of the rotation matrix is now the 
orientation f~ of the ith molecule. Integrations over 
f~ and f~, may now be carried out and the resulting 
expressing may be converted to that given by equa- 
tion (8) by making use of the sum rules for the Clebsch- 
Gordon coefficients described in Chapter 3 of Rose 
(1957). 
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Energy-Dispersive Spectroscopic Methods Applied to X-ray Diffraction in Single Crystals 
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Two single-crystal energy-dispersive crystallographic methods (the fixed-crystal method and the rotating- 
crystal method) are described and investigated. Formulae for integrated intensities are derived for 
mosaic and perfect single crystals. Experimental results and a comparison between measured and cal- 
culated integrated intensities for a perfect germanium crystal are given. Special features and possible 
applications of the methods are discussed. 

1. Introduction 

Energy-dispersive X-ray diffractometry, since it was 
introduced by Giessen & Gordon (1968) and by 

Buras, Chwaszczewska, Szarras & Szmid (1968), has 
been used almost exclusively for studies of powdered 
crystals. A few results on single-crystal diffraction have 
been published, dealing with escape peaks (Fukamachi, 


